Grado 5 Matemáticas

Paquete de actividades para el hogar del estudiante

Este Paquete de actividades para el hogar incluye un conjunto de 27 problemas prácticos que están alineados con importantes conceptos de matemáticas en los que sus estudiantes ya han trabajado durante este año.

Se recomienda que el estudiante complete una página de problemas de práctica cada día.

Anime al estudiante a hacer su mejor esfuerzo al trabajar en este contenido. Lo más importante es que continúe desarrollando sus habilidades y fluidez en matemáticas.

iMire los conceptos de Matemáticas del Grado 5 que cubre este paquete!

Grado 5 Conceptos de matemáticas cubiertos en este paquete

Concept Concepto	Practice Práctica	Fluency and Skills Practice Fluidez y práctica de destrezas	Page Página
Understanding the Place Value System Comprender el sistema de valor posicional	1	Understanding of Place Value (Comprender Valor posicional)	4
	2	Understanding Powers of 10 (Comprender Potencias de 10)	5
	3	Reading a Decimal in Word Form (Leer decimales en palabras)	6
	4	Writing a Decimal in Standard Form (Escribir un decimal en forma estándar)	7
	5	Comparing Decimals (Comparar decimales)	8
	6	Rounding Decimals (Redondear decimales)	9
Understanding Multiplication and Division with Whole Numbers Comprender la multiplicación y la división con números enteros	7	Multiplying Multi-Digit Whole Numbers (Multiplicar números enteros de varios dígitos)	10
	8	Multiplying with the Standard Algorithm (Multiplicar con algoritmo convencional)	11
	9	Using Estimation and Area Models to Divide (Usar estimación y modelos de área para dividir)	12
	10	Using Area Models and Partial Quotients to Divide (Usar modelos de área y cocientes parciales para dividir)	13
Understanding Addition and Subtraction with Decimals Comprender la sumay la resta con decimales	11	Adding Decimals (Sumar decimales)	14
	12	Subtracting Decimals to Hundredths (Restar decimales hasta centésimas)	15
	13	Using Estimation with Decimals (Usar estimación con decimales)	16
Understanding Multiplication and Division with Decimals Comprender la multiplicación y la división con decimales	14	Multiplying a Decimal by a Whole Number (Multiplicar un decimal por un número entero)	18
	15	Multiplying Decimals Less Than 1 (Multiplicar decimales menores de 1)	19
	16	Multiplying with Decimals Greater Than 1 (Multiplicar con decimales mayores de 1)	20
	17	Dividing a Decimal by a Whole Number (Dividir un decimal por un número entero)	21
	18	Dividing by Hundredths (Dividir por centésimas)	22

Grade 5 Math concepts covered in this packet (Continued)

Concept Concepto	Practice Práctica	Fluency and Skills Practice Fluidez y práctica de destrezas	Page Página
Understanding Addition and Subtraction with Fractions Comprender la suma y la resta con fracciones	19	Adding Fractions with Unlike Denominators (Sumar fracciones con distintos denominadores)	23
	20	Adding with Mixed Numbers (Sumar con números mixtos)	24
	21	Subtracting Fractions with Unlike Denominators (Restar fracciones con distintos denominadores)	25
	22	Subtracting with Mixed Numbers (Restar números mixtos)	26
	23	Estimating in Word Problems with Fractions (Hacer estimaciones en problemas verbales con fracciones)	28
Extending Multiplication and Division to Fractions Ampliar la multiplicación y la división a las fracciones	24	Fractions as Division (Fracciones como división)	29
	25	Understanding of Multiplying by a Fraction (Comprender la multiplicación por una fracción)	30
	26	Multiplying Unit Fractions to Find Area (Multiplicar fracciones unitarias para hallar el área)	31
	27	Tiling a Rectangle to Find Area (Hallar el área con el teselado de un rectángulo)	32

Understanding of Place Value

\qquad

1 The decimal grid in each model represents 1 whole. Shade each model to show the decimal number below the model.

Complete the comparison statements.
0.05 is \qquad of 0.5 .
0.5 is \qquad times the value of 0.05 .

Complete the equations.

$$
0.5 \div \square=0.05
$$ $0.05 \times$ \qquad $=0.5$

2 Draw a number line from 0 to 2 . Then draw and label points at 2 and 0.2.

Use the number line to explain why 2 is 10 times the value of 0.2 .

Complete the equations to show the relationship between 2 and 0.2 .
\qquad
$2 \div$ \qquad $=0.2$

3 Which type of model do you like best? Explain why.

Understanding Powers of 10

\qquad

Multiply or divide.

$16 \div 10$
2] $0.6 \div 10$
[3] $6 \div 10^{2}$
\qquad
\qquad
\qquad
$40.6 \div 10^{2}$
5] $6 \div 10^{3}$
$660 \div 10^{3}$
\qquad
\qquad
\qquad
70.3×10
80.3×10^{2}
90.3×10^{3}
\qquad
\qquad
\qquad
100.03×10^{2}
110.003×10^{2}
\qquad
\qquad
$1372 \div 10$
140.72×10^{2}
\qquad
$157,200 \div 10^{3}$
\qquad
\qquad
$1620 \div 10^{2}$
170.9×10^{3}
\qquad
180.001×10^{2}
\qquad
$1954 \div 10$
$20150 \div 10^{3}$
210.46×10^{3}
\qquad
\qquad
\qquad

22 What strategies did you use to solve the problems? Explain.
\qquad

What is the word form of each decimal?
10.2
\qquad
(3) 0.002
\qquad
50.012
\qquad
71.002
\qquad
990.04
\qquad
11500.2
\qquad
13700.06
\qquad

15 3,000.001
\qquad

16 What strategies did you use to help you read the decimals? Explain.

Writing a Decimal in Standard Form

\qquad

What decimal represents each number?

1 one and six tenths
\qquad
(3) $6 \times 1+5 \times \frac{1}{10}$
\qquad
$52 \times 10+7 \times \frac{1}{10}+3 \times \frac{1}{100}$
\qquad

7 five hundred twelve thousandths
\qquad
$92 \times 1+4 \times \frac{1}{100}$
\qquad
$117 \times 100+2 \times 10+3 \times 1+6 \times \frac{1}{10}$
\qquad

2 eight and eleven hundredths
\qquad

4 thirteen and thirteen thousandths
\qquad
(6) $4 \times 1+1 \times \frac{1}{100}+9 \times \frac{1}{1,000}$
\qquad
$88 \times 100+2 \times \frac{1}{10}+8 \times \frac{1}{1,000}$
\qquad

10 forty-two and forty-one hundredths
\qquad

12 twelve and sixty-eight thousandths
\qquad

133
$3 \times 1,000+6 \times 100+3 \times 10+7 \times \frac{1}{10}+2 \times \frac{1}{100}+8 \times \frac{1}{1,000}$
\qquad

14 nine hundred fifty-six and four hundred twenty-seven thousandths
\qquad

15 How was writing decimals for numbers in word form different from numbers in expanded form?

Comparing Decimals

\qquad

Write the symbol $<,=$, or $>$ in each comparison statement.
10.02 \qquad 0.002
(2) 0.05 \qquad 0.5
(3) 0.74 \qquad 0.84
40.74 \qquad 0.084
51.2 \qquad 1.25
65.130 5.13
73.201 \qquad 3.099
80.159 \qquad 1.590
98.269 \qquad 8.268
104.60 \qquad 4.060
11302.026 \qquad 300.226
120.237 \qquad 0.223
133.033 \qquad 3.303
149.074 \qquad 9.47
156.129 \qquad 6.19
16567.45 \qquad 564.75
1778.967 \qquad 78.957
185.346 \qquad 5.4
1912.112 \qquad 12.121
2026.2 \qquad 26.200
21100.32 \qquad 100.232

22 What strategies did you use to solve the problems? Explain.
\qquad

Round each decimal to the nearest tenth.
10.32
2. 3.87
(3) 0.709
\qquad
\qquad
\qquad
412.75
(5) 12.745
\qquad
6645.059
\qquad

Round each decimal to the nearest hundredth.

(7) 1.079

\qquad
80.854
\qquad
11645.059
\qquad

Round each decimal to the nearest whole number.
1412.5
\qquad
90.709
\qquad
1250.501
\qquad
15200.051
\qquad

16 Write two different decimals that are the same value when rounded to the nearest tenth. Explain why the rounded values are the same.

17 Round 1.299 to the nearest tenth and to the nearest hundredth. Explain why the rounded values are equivalent.
\qquad

Estimate. Circle all the problems with products between 3,000 and 9,000. Then find the exact products of only the problems you circled.
1132
$\begin{array}{r}\times \quad 34 \\ \hline\end{array}$
2247
$\begin{array}{r}\times \quad 15 \\ \hline\end{array}$
$3 \begin{array}{r}145 \\ \times \quad 23 \\ \hline\end{array}$
$4 \begin{array}{r}308 \\ \times \quad 12 \\ \hline\end{array}$
$5 \begin{array}{r}158 \\ \times \quad 41 \\ \hline\end{array}$
6
$\begin{array}{r}364 \\ \times \quad 32 \\ \hline\end{array}$
$7 \begin{array}{r}400 \\ \times \quad 29\end{array}$
$8 \begin{array}{r}254 \\ \times \quad 17 \\ \hline\end{array}$
$9 \begin{array}{r}187 \\ \times \quad 42\end{array}$
$10 \begin{array}{r}216 \\ \times \quad 12 \\ \hline\end{array}$
$11 \begin{array}{r}323 \\ \times \quad 18 \\ \hline\end{array}$
$12 \begin{array}{r}194 \\ \times \quad 26 \\ \hline\end{array}$
$13 \begin{array}{r}317 \\ \times \quad 14 \\ \hline\end{array}$
$14 \begin{array}{r}385 \\ \times \quad 31 \\ \hline\end{array}$
$15 \begin{array}{r}285 \\ \times \quad 27\end{array}$
\qquad

$\begin{array}{r}\times \quad 27 \\ \hline\end{array}$

16 What strategies did you use to solve the problems? Explain.
\qquad

The answers are mixed up at the bottom of the page. Cross out the answers as you complete the problems.
1
$\begin{array}{r}580 \\ \times \quad 30 \\ \hline\end{array}$
$2 \begin{array}{r}3,104 \\ \times \quad 18 \\ \hline\end{array}$
$3 \begin{array}{r}1,482 \\ \times \quad 38 \\ \hline\end{array}$
$5 \begin{array}{r}1,236 \\ \times \quad 55 \\ \hline\end{array}$
$6 \begin{array}{r}1,625 \\ \times \quad 18\end{array}$
$8 \begin{array}{r}1,788 \\ \times \quad 15 \\ \hline\end{array}$
$11 \begin{array}{r}2,409 \\ \times \quad 23 \\ \hline\end{array}$
$12 \begin{array}{r}306 \\ \times \quad 62 \\ \hline\end{array}$
$10 \begin{array}{r}648 \\ \times \quad 32 \\ \hline\end{array}$
$9 \begin{array}{r}2,500 \\ \times \quad 19 \\ \hline\end{array}$
$\begin{array}{r}\times \quad 13 \\ \hline\end{array}$
$13 \begin{array}{r}2,417 \\ \times \quad 24 \\ \hline\end{array}$

14
 $\begin{array}{r}650 \\ \times \quad 35 \\ \hline\end{array}$

15962
$\begin{array}{r}\times \quad 44 \\ \hline\end{array}$

Answers

20,736	17,400	27,365	47,500	55,872
18,972	18,445	26,820	67,980	56,316
22,750	29,250	55,407	42,328	58,008

Using Estimation and Area Models to Divide

Name: \qquad

Check each answer by multiplying the divisor by the quotient. If the answer is incorrect, cross out the answer and write the correct answer.

Division Problems	Student Answers	
$516 \div 12$	48	Check: $12 \times 48=576$
$837 \div 31$	27	
$351 \div 13$	22	
$918 \div 54$	23	
$896 \div 32$		
$1,482 \div 78$	82	
$1,344 \div 56$	24	
11		

1 Explain how you could know that the answers to two of the problems are incorrect without multiplying.
\qquad

Estimate. Circle all the problems that will have quotients greater than 30.

 Then find the exact quotients of only the problems you circled.$1540 \div 12$
$2798 \div 38$
(3) $429 \div 11$
\qquad
$4931 \div 19$
5. $925 \div 25$
\qquad
(7) $1,071 \div 51$
\qquad
$81,326 \div 13$
$91,856 \div 32$
\qquad
(6) $390 \div 15$
\qquad
\qquad
$102,952 \div 72$
$111,869 \div 89$
(12) $1,798 \div 29$
\qquad
\qquad

13 Select a problem you did not circle. Describe two different ways you could use estimation to tell the quotient is not greater than 30.
\qquad

Circle all the problems with sums less than 5.

Then find the exact sums of only the problems you circled.
$10.24+4.25$
(2) $4.8+0.16$
$32.31+2.075$
\qquad
\qquad
$42.31+2.7$
(5) $0.909+4.09$
$63.99+1.109$
\qquad
\qquad
$72.675+2.325$
$83.775+0.225$
$92.06+2.933$
\qquad
\qquad
$102.6+2.933$
\qquad
$111.809+3.091$
12 $3.01+1.991$
\qquad
(13) $1.83+3.1+0.1$
$140.012+3.79+1.101$
$152.6+2.04+0.099$

16 What strategies did you use to solve the problems?
\qquad

The answers are mixed up at the bottom of the page. Cross out the answers as you complete the problems.
(17.5-1.2
(2) $10.75-4.13$
(3) $20.2-14.8$
$4-6.12-0.7$
(5) $41.5-33.25$
(6) $15.9-8.92$
\qquad

7 105.53-99.28
$89.46-3.68$
$974-65.9$
\qquad
$105.05-0.56$
$1131.27-23.67$
\qquad

13 12-4.39
14 1,280.01-1,272.77
$15500.2-494.94$

Answers

6.25	5.26	6.62	8.1	7.6
4.49	8.25	7.61	6.98	5.42
7.24	5.4	8.02	5.78	6.3

\qquad

Solve the problems.

1 Lori needs at least 12 liters of water to fill a water cooler. She has a container with 4.55 liters of water, a container with 3.25 liters of water, and a container with 4.85 liters of water. Does she have enough water? Use estimation only to decide. Explain why you are confident in your estimate.

2 Nia wants the total weight of her luggage to be no more than 50 kilograms. She has three suitcases that weigh 15.8 kilograms, 17.42 kilograms, and 16.28 kilograms. Is the total weight within the limit? Use only estimation to decide. Explain how you know your estimate gives you the correct answer.

3 Omar measures one machine part with length 4.392 centimeters and another part with length 6.82 centimeters. What is the difference in length? Use estimation to check your answer for reasonableness.
\qquad

4 Kyle wants to buy a hat for $\$ 5.75$, a T-shirt for $\$ 7.65$, and a keychain for $\$ 3.15$. He has $\$ 16$. Does he have enough money? Use estimation only to decide. Explain why you are confident in your estimate.

5 For his hiking club, Ricardo is making a container of trail mix with 3.5 kilograms of nuts. He has 1.78 kilograms of peanuts and 0.625 kilograms of almonds. The rest of the nuts will be cashews. How many kilograms of cashews does he need? Use estimation to check your answer for reasonableness.

6 Suppose you want to be sure that the total cost of three items does not go over a certain amount. How can you use estimation only to solve the problem?

Multiply.

13×0.2
(2) 3×0.03
(3) 3×0.23
\qquad
(4) 4×0.08
(5) 4×1.1
64×1.18
\qquad
\qquad
\qquad
76×0.07
86×1.1
96×1.17
\qquad
\qquad
\qquad
1021×0.05
1121×1.05
1221×2.05
\qquad
\qquad
\qquad
139×3.25
145×0.87
1511×3.68
\qquad
\qquad
\qquad
1616×6.4
177×6.89
1832×5.12
\qquad
\qquad
\qquad

19 How did you know where to put the decimal point in problem 6?
\qquad

Multiply.

10.5×3
(2) 0.5×0.3
(3) 0.5×0.03
\qquad
\qquad
\qquad
46×0.2
50.6×0.2
60.06×0.2
\qquad
\qquad
\qquad
70.8×0.1
80.8×0.2
90.8×0.3
\qquad
\qquad
\qquad
100.4×0.02
110.4×0.04
(12) 0.4×0.12
\qquad
\qquad
\qquad
130.3×0.4
140.6×0.4
150.6×0.8
\qquad
\qquad
\qquad
160.01×0.5
170.05×0.5
180.25×0.5
\qquad
\qquad
\qquad

19 Describe a pattern you noticed when you were completing the problem set.
\qquad

The answers are mixed up at the bottom of the page. Cross out the answers as you complete the problems.
10.3×1.2
(2) 1.2×0.4
(3) 1.2×1.1
\qquad
40.3×12.1
54.4×1.1
60.02×1.8
\qquad
\qquad
92.4×4.8
86.6×0.02
\qquad
109.2×5.24
111.2×1.24
128.4×6.2
\qquad
\qquad
\qquad
134.2×3.21
144.25×8.5
151.9×2.78
\qquad
\qquad
\qquad

Answers

0.132	1.32	13.482	1.488	48.208
4.84	0.48	52.08	11.52	5.282
36.125	0.036	0.36	3.63	36.21

\qquad

Multiply to check if the student's answer is reasonable. If not, cross out the answer and write the correct quotient.

Division Problems	Student Answers	
$0.88 \div 11$	$\begin{aligned} & 0.8 \\ & 0.08 \end{aligned}$	Product: $11 \times 0.8=8.8$
$5.6 \div 8$	0.07	
$7.2 \div 9$	0.8	
$25.35 \div 5$	5.7	
$21.7 \div 7$	3.1	
$14.4 \div 12$	0.12	
$96.16 \div 8$	12.2	
$60.18 \div 2$	30.9	

1 Can an answer be incorrect even if it looks reasonable? Explain.

Divide.

(1) $1 \div 0.25$
$24 \div 0.25$
(3) $3.75 \div 0.25$
\qquad
\qquad
$4.5 \div 0.25$
[5) $1.8 \div 9$
$61.8 \div 0.9$
\qquad
\qquad
(7) $1.8 \div 0.09$
$8225 \div 75$
(9) $22.5 \div 7.5$
$102.25 \div 0.75$
$110.36 \div 0.06$
$126.36 \div 0.06$
\qquad
\qquad
$1336.36 \div 0.06$
$149 \div 2.25$
$1513.5 \div 2.25$
\qquad

16 Describe a pattern you noticed when you were completing the problem set.
\qquad

Add.

(1) $\frac{1}{2}+\frac{1}{4}$
(2) $\frac{1}{2}+\frac{3}{8}$
(5) $\frac{5}{6}+\frac{1}{12}$
\qquad
$8 \frac{3}{4}+\frac{5}{6}$
\qquad
$11 \frac{3}{2}+\frac{3}{5}$
\qquad
(4) $\frac{1}{3}+\frac{1}{4}$
\qquad
(7) $\frac{5}{6}+\frac{2}{3}$
\qquad
$10 \frac{7}{8}+\frac{2}{3}$
\qquad
(3) $\frac{1}{2}+\frac{1}{3}$

13 What is a different common denominator you could use in problem 2? Describe how you would add the fractions using this different common denominator. Is the result equivalent to the sum found in problem 2?

Add.
(1) $4 \frac{7}{8}+\frac{1}{8}$
(2) $4 \frac{7}{8}+\frac{1}{4}$
(3) $4 \frac{7}{8}+\frac{1}{2}$
(4) $2 \frac{3}{4}+\frac{1}{3}$
(5) $2 \frac{3}{4}+\frac{2}{3}$
(6) $2 \frac{3}{4}+\frac{5}{6}$
(7) $1 \frac{2}{5}+1 \frac{1}{2}$
$82 \frac{4}{5}+3 \frac{1}{2}$
(9) $3 \frac{2}{3}+3 \frac{2}{5}$

$$
104 \frac{5}{8}+2 \frac{2}{3}
$$

(11) $5 \frac{3}{4}+2 \frac{3}{5}$
(12) $3 \frac{5}{6}+2 \frac{7}{8}$

13 What strategy did you use to solve problem 3? Describe each step.

Subtract.

(1) $\frac{1}{2}-\frac{1}{4}$
(2) $\frac{1}{2}-\frac{3}{8}$
(3) $\frac{1}{2}-\frac{1}{3}$
(4) $\frac{1}{3}-\frac{1}{4}$
\qquad
(5) $\frac{5}{6}-\frac{5}{12}$
(6) $\frac{3}{4}-\frac{1}{6}$
$7 \frac{7}{8}-\frac{3}{4}$
\qquad
$8 \frac{1}{2}-\frac{2}{5}$
\qquad
$11 \frac{5}{6}-\frac{3}{8}$
(12) $\frac{7}{8}-\frac{2}{3}$
$10 \frac{2}{3}-\frac{3}{5}$
\qquad

13 How could you check your work in problem 4? Describe each step.
\qquad

Subtract.

(1) $2 \frac{1}{8}-\frac{1}{4}$
(2) $2 \frac{1}{8}-\frac{1}{2}$
(3) $2 \frac{1}{8}-\frac{3}{4}$
$42 \frac{1}{2}-\frac{2}{3}$
(5) $2 \frac{1}{4}-1 \frac{1}{3}$
(6) $3 \frac{1}{6}-1 \frac{3}{4}$
(7) $7 \frac{2}{5}-3 \frac{1}{2}$
$85 \frac{3}{8}-4 \frac{1}{6}$
(9) $8 \frac{2}{3}-3 \frac{4}{5}$
$106 \frac{2}{5}-3 \frac{3}{4}$
$\left(119 \frac{3}{8}-3 \frac{2}{3}\right.$
(12) $14 \frac{1}{8}-9 \frac{5}{6}$

13 What pattern did you notice in problems 1 through 3? Explain how this helped you subtract.

Solve the problems. Estimate to tell if your solution is reasonable. Show your work.
1 Jim mails one package that weighs $\frac{3}{8}$ pound and another that weighs $\frac{2}{3}$ pound. What is the total weight of both packages?

2 Rosa needs $5 \frac{1}{4}$ yards of ribbon for a crafts project. She already has $2 \frac{7}{8}$ yards of ribbon. How many more yards of ribbon does she need to buy?

3 To make fruit punch, Tyrone needs $3 \frac{3}{8}$ quarts of orange juice and $3 \frac{3}{4}$ quarts of cranberry juice. How many quarts of juice does he need in all?

4 Lin spent $\frac{5}{6}$ hour on math homework and $1 \frac{3}{4}$ hours on science homework. How many hours in all did she spend on homework for both subjects?

5 Sandra rode her bike $9 \frac{1}{3}$ miles on Monday and $6 \frac{4}{5}$ miles on Tuesday. How many more miles did she ride on Monday than on Tuesday?

6 How can you make a high estimate for the sum of two fractions in a word problem?

Fractions as Division

\qquad

Solve each problem.

1 Roger has 4 gallons of orange juice. He puts the same amount of juice into each of 5 pitchers. How many gallons of orange juice are in 1 pitcher?

3 Greg made 27 ounces of potato salad to serve to 10 guests at a picnic. If each serving is the same size, how much potato salad will each guest receive?

2 Marta has 8 cubic feet of potting soil and 3 flower pots. She wants to put the same amount of soil in each pot. How many cubic feet of soil will she put in each flower pot?

4 Chandra spends 15 minutes doing 4 math problems. She spends the same amount of time on each problem. How many minutes does she spend on each problem?

5 Taylor has 5 yards of gold ribbon to decorate 8 costumes for the school play. She plans to use the same amount of ribbon for each costume. How many yards of ribbon will she use for each costume?

6 DeShawn is using 7 yards of wire fencing to make a play area for his puppy. He wants to cut the fencing into 6 pieces of equal length. How long will each piece of fencing be?

7 What is a division word problem that can be represented by $\frac{4}{3}$?

Understanding of Multiplying by a Fraction

\qquad

1 Draw a number line model to represent each multiplication problem. Then solve the problem.
$\frac{2}{3} \times \frac{1}{2}$
$\frac{2}{3} \times \frac{1}{2}=$

$\frac{5}{6} \times \frac{3}{4}$

$\frac{5}{6} \times \frac{3}{4}=$

2 Draw an area model to represent each multiplication problem. Then solve the problem.
$\frac{4}{5} \times \frac{2}{3}$
$\frac{4}{5} \times \frac{2}{3}=$
$\frac{3}{4} \times \frac{1}{6}$
$\frac{3}{4} \times \frac{1}{6}=$

3 What type of model do you like best? Explain why.
\qquad

Each multiplication problem is used to find the area of a rectangle. Write the missing digits in the boxes to make each multiplication problem true.

1 length: $\frac{1}{2}$ unit
width: $\frac{1}{8}$ unit
$\frac{1}{2} \times \frac{1}{8}=\frac{\square}{\square}$ square unit

2 length: $\frac{1}{3}$ unit
width: $\frac{1}{4}$ unit
$\frac{1}{3} \times \frac{1}{4}=\frac{\square}{\square}$ square unit
(3) length: $\frac{1}{2}$ unit width: $\frac{1}{3}$ unit $\frac{1}{2} \times \frac{1}{3}=\frac{\square}{\square}$ square unit

4 length: $\frac{1}{2}$ unit
width: $\frac{1}{5}$ unit
$\frac{1}{2} \times \frac{1}{5}=\frac{\square}{\square}$ square unit

5 length: $\frac{1}{4}$ unit width: $\frac{1}{4}$ unit $\frac{1}{4} \times \frac{1}{4}=\square$

8 length: $\frac{1}{3}$ unit width: $\frac{1}{10}$ unit
$\frac{1}{3} \times \frac{1}{10}=\frac{\square}{\square}$ square unit

6 length: $\frac{1}{3}$ unit width: $\frac{1}{8}$ unit

$$
\frac{1}{3} \times \frac{1}{8}=\frac{\square}{\square}
$$

7 length: $\frac{1}{2}$ unit
width: $\frac{1}{7}$ unit
$\frac{1}{2} \times \frac{1}{7}=\frac{\square}{\square}$

9 length: $\frac{1}{5}$ unit width: $\frac{1}{6}$ unit $\frac{1}{6} \times \frac{1}{5}=\frac{\square}{\square}$ square unit

10 Write missing digits in the boxes to make two different multiplication problems that are both true.
$\frac{1}{\square} \times \frac{1}{4}=\frac{1}{\square}$

$$
\frac{1}{\square} \times \frac{1}{4}=\frac{1}{\square}
$$

\qquad

Each multiplication problem is used to find the area of a rectangle. Write each product.

1 length: $\frac{1}{2}$ unit
width: $\frac{1}{3}$ unit
$\frac{1}{2} \times \frac{1}{3}$
square unit
\qquad
square unit
\qquad
4 length: $\frac{1}{3}$ unit
width: $\frac{1}{4}$ unit
$\frac{1}{3} \times \frac{1}{4}$
unit width: $\frac{1}{2}$ unit $\frac{3}{5} \times \frac{1}{2}$
square unit
\qquad
\qquad square unit
\qquad square unit

5 length: $\frac{3}{4}$ unit width: $\frac{1}{3}$ unit
$\frac{3}{4} \times \frac{1}{3}$
\qquad square unit
2 length: $\frac{2}{3}$ unit
width: $\frac{1}{2}$ unit
$\frac{2}{3} \times \frac{1}{2}$
\qquad square unit

6 length: $\frac{5}{3}$ unit width: $\frac{3}{4}$ unit
$\frac{5}{3} \times \frac{3}{4}$
\qquad square unit

9 length: $\frac{3}{2}$ unit width: $\frac{6}{5}$ unit
$\frac{3}{2} \times \frac{6}{5}$
\qquad square unit

10 Describe how you could modify one tiling diagram to solve problems 1 through 3.

